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ABSTRACT 

A new  spherical  grid  system whose grid  density  on  the globe is almost homogeneous is proposed. The  elementary 
rules of finite differencing on the grid  system  are defined so that a desirable  condition  for  numerical  area  integration 
is satisfied. 

The  integrations of primitive  equations for a barotropic  atmosphere  with  free  surface  are  made. The  patterns 
of initial fields are  the  same  as Phillips used in 1959 for a test of his  map  projection  system  and  computation  schemes. 
Ten  test  runs  are performed for a period of 16'days.  Three of these  are  without  viscosity  and  integrated  with 
different  time  integration  schemes. Four runs  include  the  effect of non-linear viscosity with  different coefficients, 
and  the remaining three  are  computed  with  different  amounts of linear  viscosity. A noticeable  distortion of the 
flow pattern does not occur in  an  early  period  in  any  run. Analyses of the results  suggest that  the  damping of 
high  frequency oscillation of both  long  and  short  wavelengths  can  be  achieved  by  an  iterative  time  integration 
scheme, e.g., the modified Euler-backward iteration  method,  with  little effect on  the  prediction of a trend of the 
meteorological  wave. Either  the non-linear or the linear  viscosity  can  be used to  suppress a growth of short waves 
of both low and high  frequency modes, if the  optimum  amount of viscosity for tha t  purpose  does  not  exceed the 
amount representing the  actual diffusion process in  the  atmosphere.  Analyses  are  also  made  concerning  the 
effects caused  by  different  specifications of the  parameter  in  the viscosity term  in  the  equations. 

1. INTRODUCTION 

In  an  application of grid  methods  to  a meteorological 
problem,  which requires a  treatment on a global scale and 
also a  time  integration for a long period, we assume that 
two  conditions  are desirable. One is a  homogeneous 
density of grid points on the globe. The  other is the 
integral  condition, i.e., that numerical  integration of the 
difference  analog of a  quantity  must correspond to  the 
integral of its  continuous form. Smagorinsky [IO] con- 
sidered this condition for establishing suitable  computa- 
tional  boundary  conditions which were required  by  the 
finite-difference system  he  used for a closed region. In  
this  paper,  however,  the  integral condition is used in the 
definition of the  computational  form of the flux divergence 
of a  quantity.  Namely,  the  estimation of flux divergence 
is related  to  an  approximation of Gauss'  theorem applied 
to  an  area element centered at  a grid point. As a  result, 

1 On leave from the  Meteorological  Research  Institute, Tokyo,  Japan. 

looseness a t  boundaries  is  avoided  and  the finite-difference 
sum of a  quantity is exactly preserved.2 

We often place a net of points on a projection of a 
spherical surface. In  this case, we can consider that it is 
a projection of grid points originally fixed  on the globe. 
Hereafter, we shall call the  latter  the original grid points. 

A square mesh on a  stereographic projection of one 
hemisphere satisfies approximately  the  requirement of 
homogeneous density of the original grid. A space incre- 
ment on the  earth increases from the  equator to  the pole 
by a  factor of two. It is possible to establish a  finite 
difference scheme so that  the integral condition holds 
with  respect  to  a  quantity of the flux divergence type. 
Therefore, assuming lateral  boundary conditions, we can 

2 Recently,  Bryan (1965, personal communication) has  suggested  an  approximation 

form is  applied to B conservation  equation,  not  only  the  finite-difference  sum of the  quan- 
form of Gauss'  theorem for a volume  element  bounded  by surfaces of any  shape.  If  his 

tity  but  also  its variance  is  preserved  except for truncation  due  to  time  differencing. 
Accordingly, it is  possible to formulate  the  so-called  energy  conserving  schemes for the 
present spherical grid system. 
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apply this  square mesh for a closed domain. It seems 
possible to  treat a global scale problem by using two 
stereographic  maps. In  this case, a square mesh on each 
map  has some extra  points a t  the outside of the  equator. 
Each of these  points  has  a  corresponding position within 
the  equator on the  other  map.  But  the corresponding 
position does not always coincide with  a  point on the 
other  map.  Consequently  a  kind of interpolation  is 
necessary for connecting the two maps. It is from this 
circumstance that a difficult problem arises. Namely, 
the scheme of interpolation,  together  with  those of finite 
differencing and of area  integration for an  overlapping 
region, has  to  be  determined so as to satisfy the integral 
condition.  These schemes cannot  be  independent of each 
other.  Even if we could formulate  them,  they  might  be 
too  complicated to  be  practical. If we adopt a  square 
mesh on a  Mercator  projection, we can easily extend  a 
domain of integration  without  violating  the  integral con- 
dition.  However, in this case, the change in density of 
the original grid  is  too  large.  A  space  increment  is 
infinitesimally small a t  very  high latitudes  and  the grid 
cannot reach the pole. 

Phillips [5] proposed to use a  Mercator  map for low 
latitudes  and stereographic  projections for high latitudes 
and connect them a t  middle latitudes  by overlapping 
grids. In  his test  system  the  distance between original 
grid  points  changes only by  the factor of 1.4. Phillips 
[6, 71 used this  map projection  system in a  numerical 
integration of primitive  equations on a  hemisphere. The 
integration was successfully performed for a barotropic 
divergent model for two or three  days.  A  development of a 
discontinuity in the flow pattern  in  the overlapping 
region could be  avoided  with an  interpolation scheme 
which was determined  carefully. Also, an  alternating 
uncentered-centered difference scheme in time  derivative 
could not only  eliminate the  computational mode but also 
make a  selective  damping of short waves. The integral 
condition  on this  map  system  has  not  yet been discussed. 

One way to make  the  density of the original grid  nearly 
homogeneous is to change  longitudinal  and  latitudinal 
increments a t  high latitudes  as suggested by Richardson 
[SI. His plan was equivalent to using square meshes with 
variable size on a Mercator  map.  Kuo  and Nordo [3] 
used this  kind of grid system for integration of four-level 
prognostic  equations over a  hemisphere. An increment on 
the  map was doubled at  60° latitude  and doubled  again 
a t  two higher latitudes.  In  their case,  a  certain  computa- 
tional  instability, which was apparently connected  with  a 
change of mesh size, developed at  the end of the fifth day. 

A  spherical  grid  system,  in which a  meridional incre- 
ment is fixed and a zonal distance  alone is doubled a t  
higher latitudes,  has been used by  Gates  and Riegel 
11, 21 in the  integration of simple atmospheric models. 
The  results show that  an  abrupt change of zonal increment 
should not be made  in  the region of large  tendency of 
stream  function.  Otherwise,  a  tearing of the  stream func- 
tion will be  produced.  Therefore, the doubling of the 

increment  can be done  only at  high latitude. Because of 
this,  the change of grid  density becomes large.  They also 
pointed  out  the  importance of the  integral  condition. 

Based upon the previously used grid  systems described 
briefly above we propose a new grid  method.  The  pur- 
poses of this  study  are  as follows: (1) to  establish  a new 
spherical  grid  system and  set  up  the  elementary  rules of 
finite differencing on the  system, (2) to test  the usefulness 
of the new grid  system and  the  computation schemes by 
integrations of primitive  equations for a  barotropic  model 
with  a free surface, (3) to  investigate  the  ways  to  suppress 
a high frequency oscillation as well as a growth of short 
waves in the  results,  and (4) to analyze the effects of the 
different types  and  the different amounts of viscosity. 

2. A SPHERICAL GRID SYSTEM 
In this  section, we describe the new grid system. 

First, we put N+1 grid points at equal  intervals along 
the meridian of 0' longitude from the  north pole to the 
equator. We  use an index (i, j) to identify  a  grid  point 
on the  earth.  The grid points defined above  are  denoted 
by (1, I), (1, 2), . . . , (1, N+ 1) respectively from the 
north pole t'oward the  equator. We shall  refer to  the 
latitude circle which passes through  the grid paint ( I ,  j) 
as the  jth  latitude.  The (A7+l)tll latitude coincides 
with the  equator.  Then, we place on each jth  latitude, 
from j = 2  to j = N + l ,  equally  spaced 4 X ( j - l )  grid 
points, one of which is (I, j ) .  An index i increases in 
the  eastward direction up to 4j-4. In  this  way,  the 
positions of grid points in the  Northern Hemisphere are 
determined.  Those in the  Southern Hemisphere  are 
symmetric to those in the  Northern Hemisphere  with 
respect to the  equator. We call the system of all grid 
points thus located  System 1 for the resolution N .  Fig- 
ure 1 is a schematic  illustmtion of System 1 for the 
Northern  Hemisphere and for a longitudind  range, 
X=Oo through 90' E. The  structures for the  other 
three  quarters  are  the same HS in figure 1. The number 
of grid points on the  entire surface for the N-resolution 
is 4N2+2. 

The  latitude and the  longitlde of a point A(i,  j), 
j #  1, on the  Northern Hemisphere  are as follows, 

n- i-1 (2.1) X .  .=--.? 
2 , 3  2 3-1 

Hence, we can define the  increments in latitude and 
longitude, A0 and AXj, respectively, 
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FIGURE 1.-Schematic illustration of System 1 for a quarter of the 
Northern Hemisphere. 

The meridional and zonal increments on the  earth  are 
aAe and acose, AX, where a is the  radius of the  earth. 
The  ratio of the  latter  to  the former  is unity if j = N + l .  
It is between 1 and ~ 1 2  for otherj's; e.g., 3&/4 for O j = 3 O o ,  
4 for 0,=45', 312 for 8,=60°, and ~ 1 2  for Oj=900. 
The network of grid  points  is,  therefore,  slightly  elongated 
in the zonal  direction.  However, for a given N ,  the me- 
ridional  increment  is fixed and  the  latitudinal change 
of zonal increment is gradual  and varies by a  factor of 
only ~ / 2 .  Accordingly, the degree of homogeneity of 
grid  density is very high in this new system  as  compared 
with  other spherical  grid  systems used so far.  Table 1 
shows the  increments at  the'equator, a  middle latitude, 
and  the pole for N=20. The corresponding values in 
the case of a square mesh on a  stereographic map  are also 
listed. (In  this  case, N means the  number of equal 
subdivisions  between the pole and  the  equator on the 
map.)  The necessary number of grid  points t,o cover the 
entire  Northern  Hemisphere  including  the  equator for 
various N values on the new grid system  and on the 
stereographic  map  are shown in table 2. 

TABLE 1.-The space  increments at the equator, a middle  latitude,  and 
the pole.  The values for N=2O are  shown for the new  spherical  grid 
system  and a square  mesh  on a stereographic map 

(aAO)X(a cos Oi Mi) 
Square mesh on New  spherical  grid 
stereographic map 

& X A v  (on the  earth) I- 

0' v SYSTEM 

0 

60 * 0 

0 

FIGURE 2.-The locations of grid points on Systems 1, 2, and 3. The 
grid point Y (in  System 2) and grid  point K (in  System 3) for 
the given base point A (in System 1) are shown. 

In the following sections,  most of the description of 
the grid  system  and  the scheme of finite differencing will 
be rnt~de for a quarter of the  Northern  Hemisphere, 
from k=Oo to 90'. The results  are  to  be  applied to the 
other  quarters and also to the  Southern  Hemisphere. 

TABLE 2.-The number of grid points necessary to  cover  the Northern 
Hemisphere including the Equator. N is the resolution 

New  spherical Square mesh on 
N 1 grid I stereggrrphic 
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For writing  up  a scheme of finite differencing, it is  very 
convenient  to define two other grid systems.  Figure 2 
shows the  locations of grid  points  in  Systems 1, 2, and 3, 
respectively. Let a point A(i, j )  in  System 1 be  a base 
point.  We  construct  System 2 by  shifting each grid 
point of System 1 northward  by A8. Therefore,  a  base 
point A(i,  j )  has  the corresponding  grid point Y in System 
2, a t  8=8,+A8=8,-1 and X=Xt,,. On  the  other  hand, 
moving  a  grid  point A(i,  j )  westward by AXj/2 then  north- 
ward by'A8/2 gives  a  corresponding  position K a t  e=&+ 
(A8/2)=~9,-,~ and A=At,,-- (AX,/2). By relocating each 
grid  point in System 1 in the  above way, we obtain 
System 3. 

3. INTERPOLATION  AND RULES OF  FINITE 
DIFFERENCING 

Let  us assume that  the distribution of a certain  quan- 
tity is given  discretely  for  grid points of System 1. We 
have  to  estimate t,he values of System 2 and System 3. 
Figure 3 is a  composite of the  three  systems;  the  points 
A, B, C, and D are on  System 1, the  points Y and Z 
are on System 2, and  the  points K, L,   P,  Q, R, and M 
belong to System 3. The grid  value of a quantity, say X ,  
will be denoted  by a subscript which indicates  a  name 
or an index of the  point, e.g., XA or X ,  ,. Then, X y  
is to  be  evaluated  by  the following linear  interpolation 
formula, 

Xy-X D=- x y " X D  

x,-x, xc--x* (3.1) 

where xy=hA. A(i,j) is  the  base  point.  With  the use of 
(2.1),  (3.1) is rewritten, for  a given j where j >  3. 

In  general, A(0, j)=A(4j-4,  j ) .  We  can  evaluate X,  for 
the base  point B(i- 1, j )  in a  similar  way. 

For  the  base  point A(i, 2), the  point Y coincides with 
the  north pole. If X is a  scalar quantity, X ,  does not 
depend  on  the index i of the base  point.  On  the  other 
hand, a  vector  quantity a t  the pole may  be observed 
differently from base points  with different i-indices. Ac- 
cordingly, if X is a  component of a  vector  quantity, we 
have  to  assume  that, for the base  point A(i, 2 ) ,  X:T=Xi.l 
(i= 1, 2 ,   3 ,4) .  We shall  discuss the pole value, X f , l ,  in the 
next section. 

The interpolation  formula (3.2) yields X,, 

xK=a(XA+XB+XY+X,) (3.2) 

The values a t   the  points L, P, Q, R, and M ,  the base  points 
for  which are ( i + l , j ) ,   ( i , j + l ) ,   ( i + l , j + l ) ,   ( i f 2 , j S l )  
and (i- 1, j+  1) respectively,  can be  estimated by  the same 
principle. 

Our  next problem is  to  establish  the  rules for finite 
differencing. As this problem is closely connected  with 

FIGURE 3.-Composite of the  three grid systems. Grid points in 
Systems 1, 2, and  3 are indicated by black circles, cross  marks, 
and open circles, respectively. 

the scheme of area  integration, we first define an area 
element.  Figure 4 shows an  area  element, which is cen- 
tered a t  A(i, j )  and  surrounded  by  the  two meridians, 
Xi,, f (AX,/2), and  the two  parallels, 8, f (A0/2). For  the 
point A(1,   l ) ,  the  area  element is the small  polar  cap 
bounded by  the  latitude (r-A48)/2. The area of a n  
element  is  exactly given by (3.3), 

2a2AXj cos Or sin 3 for j 2 2  
A S  j =  (3.3) 

2ruz (1 - cos :) for j =  I 

2 

We make the rule that  the  total  area integration of the 
quantity X is to  be  computed  by  the  right-hand side of 
(3.4), 

J J x ~ s =  c j i  ( c xi, j AS,) (3.4) 

where the  summations  are  taken for all  grid  points of 
System 1 .  The  quantity in parentheses  in (3.4) shows an 
area  integral for the  j th  zonal ring which is  formed by 
the two latitudes 8,f (AO/2). If X=Xt ,  j =  1,  (3.4) gives 
the exact  area of a  spherical  surface,  i.e., 4ra2. 

It is convenient to define the side values of X .  These 
are  the  integrated means of X along each of the  north, 
south,  east,  and west sides of an  area  element.  In case 
of the small north polar cap, we have only the  south 
side  value. The line  integrals along the  north  and  the 
south sides are  evaluated by linearly  interpolating between 
grid values in System 3. For example, for the base  point 
A ( i , j )  in figure 3, the  north side  value is as follows, 

The  south side  value,  except for the case i = 1 ,  is given by 
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FIGURE 4.-Area elements,  centered at A (l , l) ,  A(l , j ) ,  .and A(i , j )  
respectively, are  shown  by  shading. k and 2 are  southwestern  and 
southeastern  corners of an  area element. 

Here,  the  point k between P and Q and  the  point 1 between 
Q and R are  the  southwestern  and  southeastern corners 
of an  area  element,  respectively. In  the case i=1, when 
k takes  a position between M and P,  we use (3.7) instead 
of (3.6), 

x k  and x,  in (3.6) and (3.7) are  linearly  interpolated 
values. Namely, for a specified base  point A(i , j ) ,  

X,, if j 2 2 a n d i = l  

Then, (X,),, ,  takes  the following form, 

(i-0.5)' 
+2j  (j-1) X,,  if j 2 3   a n d j - 1 2 i 2 2  (3.8) 

if j 2 2  and i=l (3.9) 

is a  weighted  mean of X,, X,, X,, and XR. In  
computer  programming, it is  practical  to  calculate  these 
weights, a t  the beginning and keep them in storage. It 
should be noted that (XN)t,j+l and (X,),,, are  integrated 
means  along the  same  latitude, i.e., 8j+4a=B,- (A0/2), 
although  the  longitudinal  ranges of integration  are dif-  
ferent.  Therefore,  the following relation is satisfied, 

4j-4 

1=1 
c (X& a cos @,+%Ah 

If meridional transfer of a  certain  quantity is repre- 
sented  by X ,  (3.10) means  that inflow of the  quantity 
into  the j t h  zonal ring across the  southern  boundary  is 
equal  to outflow from the  f j+l)th zonal ring across the 
northern  boundary. 

The  east  and  the  west side values for the  base point, 
A(i, j )  are defined as  follows,j 

The  requirement 
(XE)t,j=(XW>t+l.I (3.13) 

is satisfied by  the  above definitions. 
The elementary rules of finite differencing on the new grid 

system  are  written below. The  subscript i, j which is 
attached to the side values  in (3.5), (3.6), (3.7), (3.11), 
and (3.12) will be  omitted  hereafter. 

FLUX DIVERGENCE 

We define the zonal component of the flux divergence 
of a  quantity,  say X ,  by (3.14), 

f o r j 2 2  (3.14) 

where u ' i s  the  eastward  component of the  wind.  The 
meridional component of the flux divergence is obtained 
by (3.15) 

{ ( v X ) ,  COS e,-)ra-(tZ)s cos e,+%} for j 2 2  (3.15) 

where v is the  northward  component of the wind. 
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The above definitions of flux divergence rest on the 
following basis. If we multiply  the  sum of (3.14) and 
(3.15) by (3.3), we have 

-uwXw . aAe+ (vX), . aAX, cos e5-% 
-(vX), . aAXj cos B j + f r  for j 2 2  (3.16) 

In  (3.16), aA0 is the  length of the  east  and  the west sides, 
(LAXj cos ej-% is that of the  north  side,  and aAX5 cos Bj+% 
is that of the  south side. Consequently,  the  relation 
(3.16) is equivalent t o  Gauss'  theorem  and  the  integral 
condition  can  be satisfied locally a t  each  area  element. 
Note  that  a  meridional  transfer is estimated  not  by 
v N X N  or vsXs but  by (vX), or (vX),. This  procedure is 
necessary in  order that  the  important  condition (3.10) 
with X replaced by vX is satisfied. The idea of an  appro- 
priate use of an  integrated  mean  value along a side of an 
area  element seems to  be  applicable generally to  a grid 
system  with a variable  increment size. 

To estimate  the flux divergence  for the  small polas cap, 
we use (3.17), 

. A0 

(3.17) 

If (3.17) is multiplied by (3.3) for j = 1 ,  t,he  right-hand 
side gives a line integral of outward flux across the botind- 
ary of the polar cap. 

DIVERGENCE O F  WIND 

Putting X=l in  the  sum of (3.14) and (3.15), we get 
a formula  to  calculate  the divergence of wind 

du 1 1 
(a  cos S b X + ~ o ~ ~ ~ 0 ) , ,  j=(v * v)f*l=a cos OjAXj 2sin (A0/2) 

{ A0(UE-Uw)+Ahj(VN COS 0j-%-Vs COS 0j+fa)  } for j > 2  

(3.18) 

The formula for j =  1 can  be  obtained  by  putting X= 1 in 
(3.17). We can,  therefore,  estimate  the  vertical  com- 
ponent of the wind at  each  grid point of System 1 with t,he 
continuity  equation  and a proper  boundary  condition. 

HORIZONTAL  ADVECTION 

By  subtracting (3.18) multiplied by (xE+xw)/2  from 
the  sum of (3.14) and (3.15), we get  the formula 
for  horizontal  advection.  This process corresponds to 
V (VX)-XV . V=V . V X. The  results  written sepa- 
rately for each  component  are 

A0 (. a cos 0bX i , j  2 a cos BjAX5 2 sin (A0/2) (xE-xW> 

(3.19) 

-@X), COS ej+%- (vN cos ej-%-Vs cos e5+$4 2 

(3.20) 

If X is a function of latitude  only, ( V ; Y ) ~ = V ~ X ~ ,  (vX),= 
vsXs, and XE=Xw= (XN+Xs)/2. Then, (3.20) becomes 

vN cos ej-n+v, cos el+% cos (A0/2) 
(v%)(. cos ej-%+cos e,+% 2a sin (Ae/2)  (XN--X,> 

HORIZONTAL  GRADIENT 

Putting u = l  in (3.19), we get a formula  to  estimate 
zonal gradient, 

If we make  the definition 

it follows that 

1 A0 cos (A0/2) 
f , j  AXj 2 sin (A0/2) (3*22) 

We can  deduce a formula for meridional  gradient  from 
(3.20) by  putting v = l  and assuming XE+Xw=XN+Xs. 
It t,akes the form 

(Z) =- 1 A0 cos (A0/2) 
ab0 *, aA0 2 sin (A0/2) ( x N - x S )  (3e23) 

In  the rules of finite differencing, we often  have  such 
factors as A0/(2 sin (A0/2)) or (A0 cos (A0/2)/(2 sin (A012)). 
These  are  almost  unity  and  approach it with increasing 
N or decreasing A@. When N=10,  these  factors  are 
1.001 and 0.998, respectively. 

In establishing  the schemes of finite differencing, we 
have examined many different schemes. Those  presented 
in  this  paper  are  the  best ones in  the sense that they 
yield the  most  stable  integration of the  equations in the 
next section. The  study  by  Shuman [9] was  very  useful 
in  many  respects. It may be worth  saying that  the kay 
point of our work  was not t o  use the  grid  values of System 
1 but to  use those of System 3 for estimating  the  tendencies 
a t  grid points of System 1.  All the  test  computations 
which used the  grid  values of System 1 directly  and  did 
not  have  terms of viscosity became  computationally 
unstable  within a short  time. This is probably  due to  a 
rapid  growth of the  shortest  resolvable  wave.  The  grid 
values of System 3 are  obtained  by (3.2). In  this process, 
the waves of the scale of two  space  increments  are filtered 
out.  Therefore, if System 3 is used in tendency  calcula- 
tions, a direct  feedback of the influence of the  short  waves 
to  System 1 can  be  avoided. As for an  interpolation 
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scheme to compute  the grid  values of System 3, we 
examined  several  forms and reached the conclusion that 
we could continue the  test  integration most  satisfactorily 
using the simplest  formula (3.2). 

4. EQUATIONS  FOR A NUMERICAL TEST 
OF  THE  NEW  SPHERICAL  GRID 

We  tested the new spherical  grid  system and  the rules 
of finite differencing by  the integration of primitive  equa- 
tions. The atmospheric model and  the  initial fields we 
adopted  are  the  same  as those used by Phillips [7] in a test 
of the grid  system which he proposed. He  made  an  analy- 
sis of the behavior of this  numerical model and, accord- 
ingly, we can utilize it. In the  test  computations, we 
also attempted  to overcome difficulties associated  with 
high-frequency oscillations and  the  growth of short waves. 

It is known that, from the viewpoint of the budget of 
absolute  angular  momentum, the Coriolis term'  and  the 
metric  term in the longitudinal  component of the  equation 
of motion  are  related to  the flux divergence of the angular 
momentum  due  to  the  rotation of the  earth  and  that of 
the  relative angular  momentum,  respectively. In this 
study,  these  terms  in  the difference form of the equation 
of motion  can be combined with the  terms in the difference 
form of the continuity  equation  to  form  the flux diver- 
gences which correspond to  the above interpretation. 
Consequently, the conservation of absolute  angular 
momentum is highly  guaranteed. The prognostic  equa- 
tions  are  derived as follows. 

Lagrange's  form of the equation of motion for an inviscid 
fluid on a rotating  sphere is written  in  the spherical coordi- 
nate system (X, e, r )  

where 

d b * b  b b 
dt d t  dh de dr 
"=-+x -+e -++ - 

r is the radial  distance from the  center of the sphere and 
L is the  Lagrangian  function. L is given by 

L=+{ (T cos e i + T  COS est)2+(re)2++2 1 -+ (4.2) 

where 52 is the  angdar velocity of the sphere and +, the 
potential of gravity force plus  pressure  gradient force. 
We can redefine the coordinate  system so that  the merid- 
ional  component of centrifugal force cancels that of the 
gravity force and  the coordinate r is taken along the  true 
vertical. Furthermore, we assume the  hydrostatic rela- 
tion, which requires the elimination of some terms in the 
equations for energetical  consistency. Then, converting 
to  the (X, e, p )  coordinate  system, where p is pressure, 
we obtain the following equations, 

+# - (r COS e X) +- - (cos2 e) +T cos e b A = ~  (4.3) b r& b bQ 
bP COS e be 

-- rX2 - (cos2 e) -rxn - (cos2 e)  +-=o (4.4) l a  . b  a4 
2 be be rae 

where Q is the  geopotential of an  isobaric  surface. Intro- 
ducing );=u/(r cos e) and  e=v/r  into (4.3) and (4.4), and 
putting  r=a=earth's mean radius, we obtain  the  equa- 
tions for u and v, which are  the conventional  variables, 

bU bU 
bt - 
"_ v bu C O S B  . BU 

a cos e a  cos e ab8 -'- 3P 
u " ~ 

bV bV bv av u2 b cos2 e 
" "2) "-i, ~ 

a cos ebX ab8 bp 2a cos2 e be 

In (4.5), the so-called metric  term is included in the second 
term on the  right-hand side and  the Coriolis term is 
represented by  the  fourth  term.  They originate  from the 
advection of the absolute  angular momentum,  i.e.,  the 
first term in (4.1). The source of the  metric  term and of 
the Coriolis term  in (4.6), i.e., the  fourth  and  fifth  terms 
on the  right-hand  side  respectively, is the second term 
in (4.1). 

If the homogeneous atmosphere  with  a  variable  depth 
z (=+/g) is assumed, the  tendency of 4 is given by (4.7), 

As the  integral condition will be used in  the  estimation of 
flux divergence of Q in  the difference form of (4.7), the 
finite-difference sum of Q will be  preserved. The equations 
for U=UQ and V=VQ in  the homogeneous atmosphere  are 
derived from (4.5),  (4.6), and (4.7), 

-V+Q 
b (cos2 e) 
cos ede -4 a cos eax * =G,  (4.8) 

"_ bv ~ ( V Q U )  - ~ ( V Q V  COS e) U ~ Q  b (cos2 e) 
at - a cos'eaX a cos eae +a 2 cos2 eae 
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A system of prognostic equations for the  barotropic 
divergent  model consists of (4.7),  (4.8), and (4.9). From 
(4.7) and (4.8) we have  the  equation which  is equivalent 
to (4.1), 

bR ~ R U  ~ R V  cos e-? (3 at " u COS t m - a  COS m e  2 
_" - 

where R is the  absolute  angular  momentum of an  air 
column; R = ( u + a 0  cos e)@ cos e. As a similar manipu- 
lation is possible with  respect  to  the following difference 
forms of (4.7) and (4.8), we can  anticipate  the conserva- 
tion of the finite-difference sum of the  absolute  angular 
momentum. 

In  order  to  estimate GA and Go by  the  rules of finite 
differencing defined in  the  previous  section, we have to  
evaluate u, v and C#J in  System 3. We  can easily obtain 
these  values  from  the  System 1 values of u and v (obtained 
from U/4 and V/4 respectively) by using the  interpolation 
formulae  in section 3. The finite-difference forms of 
Gx and GO for j 2 2  are 

( G ~ ) ~ . , - - ~ ~ ( u E ~ E u E - u ~ ~ w u w )  

2 - 
COS e,++cos e,+% ffz x 

I (@vIN cos2 e , - d @ v ) S  cos2 e , + d  
( ~ 4 ~  COS ej-%+(@Is COS e,+% 

+j, cos e,-)4+cos e,+3a 

-a1 'q ( 4 E - 4 W )  (4.10) 

(GB)*., - - ( Y ~ ( v E ~ E u E - v ~ W U W )  

-az I ( v @ ~  COS e+%- ( W J V ) ~  COS e,+%} 

2 

(4.11) 

where 

1 A0 
a cos t?,AA, 2 sin (A0/2) 

1 A0 
a cos &A0 2 sin (Ae/2) 

a1 = 

a2= 

1 A0 cos (A0/2) 
a3=- aA0 2 sin (A0/2) 

(4.12) 

For the  factors u2c$ and UC$ in (4.9), we have no rules of 
estimation.  Several  schemes, including weighting the 
north side and  the  south side values by cos e, were tested. 
The  most  stable  numerical  integration was obtained  with 
the use of the simple schemes as shown by  the  third  and 
the  fourth  terms  in (4.11). It may  be  interesting  that 
j ,  is  equal  to  the  area  mean of the Coriolis parameter, 
i.e., f j= f 20 sin e dSl f dS, where f d S =  AS5is  the  area of 
an  area  element.  The  quantity mj is  equal to  the  area 
mean of tan O/u, i.e., m,=f(tan O/a)dS/ f dS. In (4.10) 
and (4.11) , the  north  and  the  south  side  values of a  quan- 
tity of the  product  type  are weighted  means of the  prod- 
ucts  at grid points of System 3. For  example, ( U V ~ ) ~ .  

= ( u ~ u ~ C $ ~ + U ~ Z ) ~ C $ ~ ) / ~ .  (See fig. 3.) The  computation 
scheme of (4.7) is written 

H , , j = - a l ( ~ E U E - + W U W ) - a Z I  (4v)N COS e,-% 
-(@),cos e,+$$} for j 2 2  (4.13) 

We use (3.17) to  obtain  a scheme for j = 1 .  

Although we assumed  a calm condition at  the pole in 
our test, we should consider how to  treat  the  wind a t   t h e  
pole in general. One  scheme,  which  should be  tested i n  
the  future,  is described in the following. Figure 5 is 

FIGURE 5.-Stereographic projection of a polar  region. The 
corresponding index in System 1 is shown for each grid point 
surrounding the pole. x, and c, are components of the pole  wind. 
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a  stereographic projection of a  polar region. The  four 
giid  points which have  the index j = 2  in System 1 are 
projected  around  the pole. Taking  the  map  axis  as 
shown in  the figure, we can define the  map velocity, x and 
7j. For example, x and 7j a t  the  point  to  the  right of the 
pole are  proportional to -v and u a t  the  grid  point (2, 2) 
of System 1. By using x, and i ,  and 4 a t  the pole and 
the  surrounding points, we can estimate  the  tendencies of 
x and 7j a t  the pole with  the  equations  written in map 
coordinates.  We  denote x and 7j a t  the pole by x p  and 7 j p .  

Then, if we  see the wind a t  the pole from the grid point 
(1 , 2) of System 1, we will observe x p  as  an  eastward 
component  and 7 j p  as a  northward component. In  this 
case the pole is considered to  be  the  point (1, 1). While 
from  the grid point (2, 2), 7 j p  will be observed as  an  east- 
ward  component  and x p  as a southward  component. The 
pole is then  taken  as  the  point (2 , l ) .  In  this way,  the fol- 

and [Dl={ (DS)‘+ (DT)2}1/2 is  pure  deformation.  We 
can  compute DT,  DS,  and D in System 3 from u and v in 
Systems 1 and 2. For instance, referring to figure 3, 
we obtain 

lowing definition of the pole values  can  be  made, where a1 and a3 are  the  same as those defined in (4.12). 
u 1 , 1 = x p   v 1 , 1 = y p  Then, FA and Fe are given by 
Uz, 1 = y p  V’, 1 = - x p  

u 3 , 1 = - x p  v3,1=-5jp 

U 4 , 1 = - 7 j p  v 4 . 1 = x p  

As mentioned  in section 3, these  values  are  taken  as uy  
and vy  for  the  base  point A(i, 2). In  the case of a scalar 
quantity,  the pole value does not  change  with  the index i .  
For example + t , l = $ p  for i=1, 2, 3 and 4. 

Smagorinsky (to be  published)  made  a  formulation of 
non-1inea.r lateral diffusion which  he  assumed to represent 
an effect of motions of unresolvable scale. In some test 
computations, we add  this  kind of viscosity term  to  the 
tendency  equations (4.8) and (4.9). These  terms,  denoted 
by FA and Fe, take  the form 

- (+IDIDT),~,+,$ cos2 o,+,a I] (4.17) 

where a’ is defined in (4.12). In (4.16) and (4.17), n5 is 
a  factor  related  to  an  area  element  centered at the  point 
A in figure 4, n5+4 and n,+W are  related to  the correspond- 
ing areas  centered at  the  points K and P in figure 3, 
respectively;  these  are  written 

DS= av COS e a 
a COS ebh +”((“) a be cos e 



408 MONTHLY  WEATHER  REVIEW Vol. 93, No. 7 

where A is the  kinematic  eddy-viscosity coefficient. FX 
is derived by dividing  the  eddy diffusion of relative  angular 
momentum  by acos0. Fe represents  the diffusion of 
v-momentum. The  finite difference forms of (4.18) are 
given by 

(4.19) 

Here, (aula cos0 (4bU/a&)N, etc.,  are  obtained from 
4 and  the  values of  (&+cos0 bX), (&&be), etc.,  in 
System 3. The  latter  quantities  are  estimated  by  the 
following schemes.  (Refer to  fig. 3.) 

As we mentioned before, the  initial  data used in our 
test  are  the  same as given by Phillips [7]. Namely,  the 
initial field of wind  velocity is obtained  from  the  stream 
function of a  Haurwitz-type wave with wave number 4, 
i.e., equation (36) with R=4 in Phillips' paper.  The 
initial field of geopotential is given by  equation (38) in 
his paper.  The fields of geopotential  and  stream  function 
satisfy  the so-called balance  condition. In  the case of 
the  initial fields that, we used, the  predictions  in one 
quarter of the  Northern  Hemisphere  repeat in the  other 
three  quarters  and  those  in  the  Southern  Hemisphere  are 
symmetrical  to  the  Northern  Hemisphere.  The compu- 
tations were made  only  for  a  quarter of the  Northern 
Hemisphere by assuming  a cyclic field in  the  longitudinal 
direction,  a  symmetric field with  respect  to  the  equator, 
and a calm  condition at the  north pole. 

The  equations were integrated  by  three schemes. 
Hereafter, UT, vr, @, Ur(=uT@), V(=VT@) represent  the 
values at  the time level r,  and Gi,  Gi, FI, FI,  and @ are 
the  values of a, etc.,  estimated from UT, vr and @. u*, G:, 
F:, etc.,  are  used  with a similar  meaning to denote  the 
values at  the first step  iteration.  Double  asterisks 
indicate  the second step  iteration.  Then,  the  integration 
schemes of U and  are  written  as follows. (A scheme  for 
V is omitted  as it is similar  to  that for 77.) 

Scheme A (leapfrog method) : 

Scheme B (modified Euler-backward  iteration) : 

t (modifled Euler  method) 

Scheme C (leapfrog-trapezoidal iteration) 

U*=V"+2At@ 
4*=@-'+2AtH' 

(leapfrog method) 

V+'=V+y (G',+@)+AtFr, At 

(trapezoidal  correction) 

@+l=@+T ( H r + H * )  At 

We used  a  time step At=10 min. here. The  Courant- 
Friedlich-Levy condition is satisfied with  this  value  and 
the specified resolution N = 2 0 ,  the  meridional  increment 
for which is 500 km.  The  characteristics of the  above 
schemes  have  been discussed by  the  author [4]. Scheme 
B is free from  a computational mode. A selective  damp- 
ing of gravitational waves is a  feature of scheme B. A 
computational mode is suppressed  to  a  high degree by 
Scheme C. In  order  to  apply Scheme A or C to  obtain 
the values at t = A t ,  we need a special  process. In test 
runs, we used forward  time differences to  get  the values 
a t  t=At /2  first. Then Scheme A or C was  used  with 
the  time  step replaced by At/2.  

5. RESULTS AND ANALYSES OF THE TEST RUNS 
Table 3 is a list of the  test  runs we made.  Run 1 has 

no  prevention  against  a  computational  mode,  gravitational 
waves,  and destructive  short waves. The  other  runs 
were attempted  to  suppress,  more or less, the  trouble 

TABLE 3.-A list of the test runs. All runs were made  with N=dO 
and A t =  10 min.  Time  integration schemes  are explained near the 
end of section 4 .  ko is a constant i n  the non-linear  viscosity  term 
(4.15) .  A is  a  kinematic  eddy  viscosity coegicient i n  the linear 
vzscosity term  (4.18) 

__ 
~ 

Run 

- 
1 
2 
3 

11 
12 
13 

21 
14 

23 
22 

~ 

Integration  scheme I ko or A 
Computa- 
tion time 

(min.) 

Scheme A. .  ....................... 

37 no viscosity term ............ Scheme C was used for 3 steps 
81 no viscosity term ............ Scheme B-. ....................... 
36 no viscosity term ............ 

every 12 hr. Scheme A was used 

Scheme A ......................... 

52 ko=0.3 ....................... Scheme A ......................... 
52 ko=O.2 ....................... SchemeA .......................... 
52 k o = O . l  ....................... 

52 ko=0.5 ...................... Snheme A"- ...................... 

for the  other  steps. 

........... 

Scheme  A ......................... A=105 m.2 sec.-l__.._.. ...... 43 
SchemeA ........................ A=5XlOa ................... 43 
Scheme A. ........................ A =106.. .................... 43 I 
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resulting  from  the  above  factors. In  the  last column, 
the  total  computation  time for a  16-day prediction on the 
IBM 7030 (STRETCH) is shown  for  each run. As the 
prediction  and  the  analysis were made  in  a single program, 
the  time used for analysis  was also included in this figure. 

As discussed by Phillips [7], gravitational oscillations 
are caused  from the beginning of the  integration  not  by 
the  numerical  technique  but  by our choice of initial 
fields. But  the  behavior of the flow pattern for a few 
days will resemble the  barotropic non-divergent  forecast 
starting  with  the  same field of stream  function  as we chose. 
In  the  latter case, the  pattern moves t o  the  east while 
preserving the  initial  shape. In  all test  runs,  the average 
speed of eastward  movement of the  pattern for four  days 
was about 11" of longitude  per  day.  This is a  little 
slower than  the speed  for the  non-divergent case. We 
could see no sign of distortion or tearing of the flow 
pattern, which has been  a deficiency of spherical grid 
methods  used by  Kuo  and  Nordo [3] and  by  Gates  and 
Riegel [l, 21.  As the  latitudinal  change of zonal increment 
in  the newly designed grid system  is  gradual,  there  is  not 
a  latitudinal  jump in the  retardation of waves resulting 
from the  space  truncation  error.  At  about  the fifth day, 
a small-scale wave  appeared in Runs 1, 3, 11, and 21, 
and it continued  to grow  with time. In  these  runs  the 
fields in time became less smooth  as  the  number of 
marching steps increased. It was, however, easy in every 
run  to  trace  the  movement of the  major  trough in the 
flow pattern  until  the end of the  integration period. 
The integration was terminated at the end of the  16th 
day, i.e., a t  2304 steps, even in  the  run in which there 
was no  numerical difficulty to  prevent  extending  the 
integration. 

We have,  from (3.3), (4.13),  and (4.14), 

where the  summation is taken  for  the  entire  grid,  and p 

is the  density of the  air.  Equation (5.1) means that  the 
total mass of the  air is conserved. In  a similar way, 
from (3.3), (4.10), (4.13),  and (4.16) (or  (4.19)), we have 

Here, E represents  a  leak of relative  angular  momentum at  
the  northern  boundary of the zonal ring of j = 2  to or 
from the small polar  cap (j=1). This E has no counter- 
part,  as we assumed u=O at j =  1. Equation (5.2) shows 
that, if we define the  total  absolute  angular  momentum  by 

I 1st day I "I 11th day 

RUN 
1 
2 
3 - 11 

"""" 

. -. . -. . . . . -. 
......... " ........ . 

0 

0-1 

E -2 

In 
\ 

"3 
- 1  6 th  day I /  16th"'day ' I  

FIGURE 6.-The variation of meridional  component of wind with 
time at Point (2,3). The  plot  is  made for the lst, the  6th,  the 
l l t h ,  and  the  16th days. 

it  will be  almost conserved. In  the  test  computations,  the 
magnitude of the  fluctuation of absolute  angular  momen- 
tum as defined by (5.3) was indeed  very small. Namely, 
it was within percent of the  initial  value of the  total 
absolute angular  momentum in Runs 21, 22, and 23, and 
within lo-* percent  in  the  other  runs. 

We made  an analysis of the high-frequency oscillation, 
computational  mode,  and short waves by comparisons of 
the  results of Runs 1, 2, 3,  and 11. As described before, 
Run 1 was affected by all of these  three undesirable ele- 
ments. In some cases, high-frequency oscillation in the 
solution of primitive  equations is a  numerically  caused 
noise. I t  may be necessary to  control it when it is excited. 
In  Run 2, we intended  to  suppress  it  through  the use of 
the  iterative  time  integration scheme which could  cause 
a highly selective damping of it. We tried  to  eliminate 
only the  computational  mode in Run 3. Run 11 was 
supposed t o  cause  a  weak  damping of short waves. Let 
us examine,  first,  a  variation of a  quantity  with  time at  
specified grid points.  Figure 6 is a  plot of the  meridional 
component of wind for the  lst,  6th,  llth,  and  16th  day  at 
Point (2, 3), which is  very  near  the pole. A plot  for 
Run  3 is made  only for the 1 Ith  day  and  that for Run 11 
for the  1st  day is omitted. In  Run 2, the  prediction of 
ZI at  this  point was very  stable  and  the  amplitude of its 
variation was small.  Even on the  16th  day, it only 
varied between 23 cm. sec." and -57 cm. sec." But 
in Run 1, a  high-frequency oscillation with a period o f  
about  3  hr. developed  with  time. Its amplitude on the 
6th,  the  Ilth,  and  the 16th  day was 1 m. sec.",  10 In. 
sec.", and 50 m. sec.", respectively. The  amplitude for 
Run 3 on the  11th  day was about 90 percent of that for 
Run 1. We made comparisons  between the  results of 
these two runs from many  aspects.  We  can  conclude 
that, so far  as  the  test  computation was concerned, the 
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FIGURE 7.-The variation of geopotential a t   the  pole with  time.  Plot  is  made  for  every 10 steps for Run 1  (the whole  period) and for Run 
11 (after  the  1300th  step).  Curve for Run 2 is  drawn  after  the  700th  step. 

amplitude of the  computational  mode was very small. 
The  plot  for  Run 11 in figure 6 suggests that  the high- 
frequency oscillation could be  controlled  to  some degree 
by suppressing  short waves. This will be rea%rmed later. 

The  variation of geopotential at   the pole, i.e., at a 
singular  point,  is  shown  in figure 7. The geopotential a t  
the pole did  not oscillate in  Run 2. But in Run 1, an 
oscillation became  noticeable a t  about  the  1000th  step  and 
its  amplitude increased with  time.  These  features coin- 
cide quite well with  the  above-mentioned  analyses of the 
v-field near  the pole. 

In  order  to show how a  high-frequency oscillation 
appears  in  the  middle  latitudes  and on the  equator, figures 
8 and 9 are presented. In figure 8, a plot of geopotential 
at  Point (6, 11) is  made. The location of this  point  is 
almost  the  same  as  that of Point I1 in  Phillips' [7] analysis. 
Figure 9 illustrates  the  variation of geopotential a t  Point 
(11,21), i.e., on the  equator.  We  again  observe  a  damping 
of the  gravitational wave in Run 2, its  growth in Run 1, 
and  a  relatively  small oscillation in  Run 11. As seen in 
figure 8, the  gravitational wave  was almost completely 
suppressed  within the first  day.  Comparing figures 6 
through 9, we can  say  that in Run 1 a  high-frequency 
oscillation is  superposed on the  curve corresponding to 
Run 2. This  means  that (1) the  gravitational wave 
could be  eliminated by  the  time  integration scheme used 
in  Run 2 with  little effect on the  prediction of the  trend of 
the meteorological wave,  and (2) the  interaction between 
the  gravitational  wave  and  the meteorological wave was 
small in the  test  computation. 

The  growth of short waves  can be revealed  by  a  spectrum 
analysis.  Table 4 shows amplitudes of the  Fourier series 
of geopotential along the  13th  latitude circle (36' lat.) 
for various  runs. The average  spectra for the  6th  and  the 
16th  day  are  listed. It is seen that  the  growth of the  tail 
end of the  spectrum in Run 11 was  smaller  than  in  Run 1 
and  Run 2. This is probably  the effect of viscosity, 
although it seems too weak to suppress  the  growth of short 

I 1 1  \ 

8.1 
10 DA,YS 

FIGURE 8.-The variation of geopotential a t  Point  (6,ll)  with time. 
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FIGURE 9.-The variation of geopotential a t  Point (11,21) with  time. 
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TABLE 4.-Amplitudes of the Fourier  series of the geopotential along 
the 13th  latitude (36' lat.). Fourier analysis was made f o r  a range 
of 90" long.  The average spectra for the 6th  and the 16th day are 
shown ( in  l @  m.2/sec.2) 

Period I 6th  day I 16th day 

Wavenumber.1 1 2  3  4  5 6 1 1 2 3  4  5 6 -  

Run 1 ____.____ 

1.51 0.08 0.07 0.04 0.16 0.06 2.57 0.03  0.07  0.07  0.10 0.06 14 ......... 
5.85  0.92  0.71  1.13  2.95 1.70 6.53 0.12  0.10  0.20 0.48 0.45 11" ______. 
5.72  1.81  1.40  1.47  3.39  2.12  6.89 0.06 0.13  0.32  0.59  0.49 2 __.._____ 
5.16  1.84  1.71  2.16  6.32  3.49  6.91  0.14  0.12 0.29 0.75  0.49 

waves completely. It should  be  noted that  short waves, 
which had  nothing to  do  with  high-frequency oscillations, 
developed in  Run 2. 

As shown above, there  are two  kinds of short waves. 
We denote these by HS (high frequency  short waves) and 
LS (low frequency short  waves).  For  the  long waves, too, 
we have HL (high frequency  long  waves)  and LL (low 
frequency long waves).  The  LL wave is the so-called 
meteorological wave.  We  assume that a geopotential 
field a t  any  instant consists of the  above  four components. 
Then,  the  contribution of each  component to  the  tendency 
of geopotential at one point is proportional  to  the ampli- 
tude of this  component  multiplied by its phase velocity 
times the inverse of its  wavelength. Accordingly, an HS 
wave, if there is one, has  a  large  weight  in  the  tendency of 
geopotential. 

As a  measure of the  magnitude of the tendency, we 
computed  a global average of I@-'- @I. Figure 10  is a 
plot of this  quantity for Runs 1 and 2. Since the geo- 
potential field  was smooth  initially, we may  say  that  the 
HS and LS waves  were negligible in  the beginning. As  we 
mentioned before, the HL wave  was  caused  from the 

2000 

20 

1c 

beginning in our case. Hence, the level B in figure 10 
shows the  sum of the  contributions of the HL and  the LL 
waves. Since the HL wave  was damped  early  in  Run 2, 
the level A in figure 10 shows the  contribution of the LL 
wave. The difference of the levels A  and B can  be 
attributed  to  the  HL wave. We further assume that  the 
contributions  from  the LL  and  the  HL waves  did not 
change throughout  the whole period. Then,  the difference 
between the  plot for Run  2  and  the level A  was  caused by 
the  LS wave. The difference between the  plots  for  Runs 
1 and 2 shows the  sum of the effects of the  HL  and  the 
HS waves. We can,  therefore,  estimate  the  contributions 
from the  LL,  HL, LS, and HS waves in  Run  1.  In  the 
units m.* sec.-2 (10 rnin.)-l, they  are 14 :28 : O  : O  in  the 
beginning, 14:28:5:180 for the  11th  day,  and  14:28:17: 
820 for the  16th  day, respectively. The troublesome 
behavior of the HS wave is clearly  shown. 

Although the  integration  Scheme B, which we used in 
Run 2, could eliminate  the HS wave  very well, it was not 
effective for suppressing the LS wave. The  growth of the 
LS wave may be  a source of trouble in a  long  run, e.g., 
a cause of aliasing. We  attempted  to  control  this wave 
by viscosity, which  might  cause the  dissipation of the 
HS wave too. Furthermore,  an  introduction of viscosity 
will result  in  more or less a  damping of long waves, and, 
hence, a  weakening of the  production of short waves 
through non-linear interactions.  We  performed  three 
more  integrations  (Runs 12, 13, and 14) using the  same 
computation  schemes  both  in  space  and  time as in  Run 11, 
but  changing  the  constant  in  the viscosity terms (4.15). 
Use of alarge  constant was indeed effective for suppressing 
both  the HS and  the LS waves. For example, table  4 

FIGURE 10.-The variation of a global average of l.$r+*-pl with  time.  Plot is made for every 10 steps.  The level A shows the  contribution 
of the LL wave to  the  tendency.  The level B represents  the  sum of the  contributions  from  the LL wave  and  the HL wave. 
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Here, we mention briefly an  analysis of the energy 
budget.  From (4.7), (4.8), and (4.9) with  the viscosity 
terms  added, we have 

- rn /sec 

FIGURE 11.-The latitudinal  distributions of zonal  mean of u at  the 
end of the  10th  day.  Those  for  Runs 1, 11, 13, and 14 are shown. 
The  initial  distribution  is also shown. 

shows that  the  tail  end of the  spectrum of geopotential 
did  not grow in  Run 14. But, in this  run,  a  strong diffusion 
of momentum  made  the flow pattern different from  the 
case of weak viscosity. 

In  figure 11, the  latitudinal  distributions of zonal mean 
of u at  the end of the  10th  day  are  illustrated for Runs 
1, 11, 12, and 14. The  distribution for Run 14 differs from 
the  others. It is hard  to  say which run is best. However, 
if we intend  to  eliminate  short waves by  the viscosity 
which has  the  smallest effect on the long  waves, the vis- 
cosity used in  Run 14 may  not  be  appropriate for this 
purpose. If viscosity works in  the  way we intend, t,he 
LL  and  the  HL waves in Run 1 remain  almost  unchanged 
while the  short waves are  filtered.  Consequently,  the 
value l ~ $ ~ + ~ - + ~ l  will maintain  the level B of figure 10. 

To reduce  this level to  the level A in the  same figure we 
must  adopt  the  integration  scheme B. At  that time,  the 
HL wave  is damped  out  and we have  the LL wave only. 
Figure 12 shows the  variation of the  above  measure  with 
time for Runs 11 through 14. About 0.2 seems to be  an 
optimum  value of ko for the  type of flow pattern we used. 
In  the case of a  more  complicated  model, especially in a 
baroclinic model, the  shape of the energy spectrum will 
differ from the  one we have  dealt  with.  There  may  be a 
supply of energy to  the waves of specific scale. Ac- 
cordingly, the  optimum  value of ko may be different. 

a p  "_ 
at-  (5.4) 

where K=p/gf$+(u2+v2)&lS is total  kinetic energy, 
P = p / g f  f +&dS is total  potential energy. Here, C and 
E are  the conversion of potential  to  kinetic energy and  the 
dissipation of kinetic  energy  respectively, 

n n  

If we define as follows 

( ~ 4 ) ~  COS e j - J a + ( w ) s  COS ej+H 
COS ej-M+cos ef+% v*4* = - 

(4.10)Xu*+(4.11) xv* leads to a  vanishing of the work 
due  to  the Coriolis force. Using u*, v* , and &, we 
evaluated K, P,  C, and E by  the following numerical 
integration, 

K=P/gCC+{U2 ,+v2 ,14*A~j  

p = P I S  c c 4 4 3 s j  

i '  

i t  

c= - p / g  { U*al (4E-4WV) 
3 '  

+v*a3 ~ 2 ( ~ N " $ S ) }  A s ,  

E-PIgC~Iu*(Fx) i , j+v*(Fe) i , j jASj  
i l  

We can  check the  above  integration schemes by examin- 
ing whether  relations like (5.4) hold  numerically or not. 
Figure 13 shows time  histories of K ,  P,  C, and (E(  for Run 
12 for two days. (E  is always  negative.) It is seen that 
an increase of K occurs only  when C>IE(, and  the  vari- 
ation of P corresponds well to  that of C. These  are in 
good qualitative  agreement  with (5.4). It was also found 
that, although  there was a  slight  quantitative  discrepancy 
between the  numerical  estimations of the  left-  and  the 
right-hand sides of (5.4), it could be  smoothed  out in a 
budget  analysis for a  long period. The  time  integration 
Schemes  B  and  C have  damping  characteristics by them- 
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selves. But  the  rate of damping  was  not  large in the  test 
runs.  The  initial values of K and P for the  Northern 
Hemisphere  were 3.6 X1Oz1, 1.2 X loz3 (in m.-kg.-sec. units) , 
respectively. Table 5 shows the  ratio of (K+P) at  the 
end of the  16th  day t o  its  initial  value,  the final level of 
K,  the  initial  and  the final levels of IEI, and  the dissipa- 
tion rate of kinetic  energy  near  the  end of the  integration 
period. In  Runs 12 through  14,  the decrease of the level 
of K is seen. The dissipation of kinetic  energy by  the 
non-linear viscosity for a given grid size is proportional 
to kg times  the  cube of the  magnitude of pure deforma- 
tion. Therefore, a t   t h i  beginning of integration,  the 
dissipation was very large in runs  with large ko. Later, 
it became  small  compared  with the case of small ko, be- 
cause of a considerable decrease in deformation.  Column 
(5) of table 5 shows that  the  rate of dissipation of kinetic 
energy at  the  16th  day was about 1 percent per day in 
Runs 11 through 14. This, however, does not mean the 
dissipation rate  approaches  a  small value in the  integra- 
tion for an  atmospheric  model in general. In  the case of 
a baroclinic model, the  development of unstable  waves 
may offset the decrease of the  deformation field by vis- 
cosity. Consequently,  the  dissipation  rate of kinetic 
energy will be maintained  at  a  much higher level than 
the  present  estimation. 

We  made  other  test  computations,  Runs 21, 22, and 
23. Tn these  runs,  the  linear viscosity term (4.'18) was 
applied instead of (4.15). Other  computation  schemes 
are  the  same  as we used in the  runs  with non-linear 
viscosity. The  average space increment for the resolution 
N=20 is about 600 km.  Introducing Z=6X107 cm. into 

TABLE 5.-Column ( 1 ) :  the ratio (K+P) at  the  end of the 16th  day 
to its  initial value (in  percent). Column (2)  : the jinal level of K 
( in  loz1 m.-kg.-sec. units). Column (3) :  the initial level of /E 
(in 1017 m.-kg.-sec.  units per 10 min.).  Column ( 4 ) :  the jinal leve i 
of /E/ ( in  10'7 m.-kg.-sec.  units  per 10 min.).  Column (6): dissi- 
pation rate of kinetic  energy  near the  end of 16th  day ( in  percent 
per day) 

101.3 
loo. 4 
99.8 
99. 2 
99. 0 

99.9 
98.8 

99.3 
99.0 

4.6 

3.7 
4.2 

2.9 
2.5 
2.2 
3.6 
3. 0 
2. 5 

2. 5 
10 
22 
62 
1.3 
6.4 

13 

3. 0 
2. 0 
1.3 
0.4 
2.0 
2.5 
2. 1 

(5) 

/El 16th 

K 16th 

1. 2 
1. 0 
0.8 
0.3 
0.8 
1.2 
1.2 

Richardson's empirical law  A=0.21d3, we have  A=5X105 
m.2 sec.". This  value was adopted  as  the  kinematic 
eddy-viscosity coefficient in  Run 22. The smaller value, 
i.e., A=105  m.2 sec.", was  used in  Run 21, and  the  larger 
value, A=106  m.2 sec." was applied to  Run 23. 

As we have  mentioned before, the  variation of the 
magnitude of the  tendency of geopotential  with  time  is  a 
good measure  to show how the  short waves  developed or 
were suppressed. We made a plot for each run in the 
same  way  as we did in figures 10 and 12. The  trend of 
the  plot for Run 21 was  between  those for Runs 1 and 11. 
Namely,  the  growth of the  short waves could not be 
suppressed in Run 21. In  the case of Run 22, the  plot 
before the  10th  day was seen around  the  line corresponding 
to level B in figure 12. The  plot  after  the  11th  day was 

41 
1 ' 2 ' 3  ' 4  ' 5  ' 6  ' 7  ' 8  ' 9  '10'11'12'13'14'15'16' DAYS 

FIGURE 12.-The  variation of a global average of I & + ~ - C $ ~ I  with  time.  Plot is made for every 10 steps. The level l3 is the same  as in 
figure 10. 
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TABLE 6.-Di$erences between the maximum  and the minimum values 
of u, v and 4 on the speciJied latitudes at  the  end of the 10th  day 

Y 

1 n n A s .f : 2 h-+\ ,- -t +A ,-. 

o *  "I 
" "- - - _" lElL - CY 

a>-1 \ I 
- x  *Y 

DAYS 
9 1o-t 

FIGURE 13.-Time histories of K (total  kinetic  energy), P (total 
potential  energy), C (conversion of potential energy to kinetic 
energy), and IEl (dissipation of kinetic  energy).  The  variation 
in  Run 12  is  shown for a 48-hr. period. 

slightly  above  the level B.  The  plot  for  Run 23  showed 
a  trend corresponding to  Run 13. Consequently, it was 
shown that  the use of the  linear viscosity also could 
suppress  the  growth of the  short waves. The  optimum 
value of the eddy-viscosity coefficient for numerically 
stabilizing  this  test  computation is a  little 'larger than 
5X106 m.'  sec. l. 

Finally, we consider the effects of viscosities of different 
types  and different amounts. 

The first problem is the comparison  between the  test 
runs  with  non-linear viscosity and  those  with  linear vis- 
cosity. We  have  stated  above  that  Runs 21, 22, and 23 
showed  a trend  similar  to  Runs 11, 12, and 13, respectively, 
in the  analysis of the  tendency of geopotential. The same 
correspondences are also seen in  the energy analysis 
which  is  shown in table 5. At  the beginning of the  inte- 
gration period, the  dissipation of kinetic  energy in Runs 2 1, 
22, and 23 is  proportional  to  the  magnitude of the  eddy- 
viscosity coefficient used. But,  as  a  result of the change 
of the wind field, the  dissipation  rate of the  kinetic energy 
a t  the end of the  16th  day (column  (5)) in  all  three  runs 
is almost  the  same, i.e., it is about  one  percent per day. 
This  situation is the  same as in  Runs 11, 12, and 13. The 
final level of the  kientic energy in  Runs 21,  22, and 23 
(column(2)) is also about  the  same as in  Runs 11, 12, 
and 13, respectively. 

We  further  made comparisons of the  eddy  parts of the 
field quantities  in each of the  three  groups:  Runs 11 and 
21, Runs 12 and 22, and  Runs  13  and 23. In  table 6 ,  
the differences of the  maximum  and  the  minimum values 
of u, v and + on the specified latitudes  at  the end of the 
Loth day  are shown. Roughly,  these  represent twice the 
amplitudes of the  eddy  parts.  We again observe a good 
agreement  between the two runs  in each  group.  This 
means that  the level of the  eddy  kinetic energy  is  almost 
the  same  in  the two runs. As for  the zonal mean  quantity, 

u (m. set.") u (m. set.") 

Group Run 

j=4 12  21 j=4 12  20 

A __........___ {R 
Run 11 _____._.._ 
un 21 ____"" "  

Run 12 ._..____._ 

Run 13 ____._____ 
un 22 _"_ - -"" 
un23""""" 

B """.""" 

{R c """"""_ 
iR 

D ______....... Run 14 

15.2  54.4  61.6 

7.5  84.1  15.8  9.9  39.0  46.3 
7.1  81.3  15.3  9.4  33.8  45.8 
12.2  104.3  19.6  15.9  59.1  67.4 
11.2  100.8  18. 7 

1.8  29.8 7.2 2.6  12.5  23.1 
4.9  65.2  12.5 6.2 25.3  36.7 
4.7  59.3  12.3  5.3  22.1  38.0 

we compared  the  latitudinal  distribution of 

j=4 12  21 

0.4 13.6 2. 1 

0.6 10.5 1.3 
1.0 14.1 2.4 

0.6 11.0 1. 4 
0.2 6.9 1. 1 
0.2 8.1 0.9 
1.8 3.5 1. 1 

the zonal 
mean o f u   a t  the  end of the  10th  day in Runs 21, 22, and 
23 with figure 11. The  distributions were seen near  the 
lines for Runs 11 or 12 in figure 11, except for  a  portion of 
j = 2  and 3. At  the  very high latitudes,  the  zonal  mean 
of u in  the  runs  with  linear viscosity was about  twice  that 
in  the  runs  with non-linear viscosity. This is  perhaps 
due to  the different effects of viscosities of different  types. 
We  have  already  mentioned  that  the  fluctuation of the 
total  absolute  angular  momentum defined by (5.3) is 
caused  by the  leak of the  momentum  to or from  the  small 
polar  cap  and it is relatively  large in Runs 21-23 compared 
with  Runs 11-14, though it is still negligible. On the 
whole, so far as our test  computations  are  concerned,  the 
behavior of the  runs  with non-linear viscosity with  the 
coefficient ko=O.l, 0.2, and 0.3 resembles quite well that 
of the  runs  with  linear viscosity with A= lo5, 5x IO5, and 
IO6 m.2 sec.", respectively. 

The  next problem  is the comparison  among the  runs 
with different amounts of viscosity. Based  on  the dis- 
cussions above, we  classified the  test  runs  into  four  groups 
as shown in table 6 according to  the  behavior of the  inte- 
gration. We can  assume that  the different results among 
the  groups were  caused by  the different amounts of viscos- 
ity.  Then, it can be deduced  from the analyses made so far, 
that  as  the viscosity increases from the  amount for Group 
A  to  that  for  Group  C,  the level of the  eddy  kinetic energy 
decreases considerably while the  latitudinal  distribution 
of the zonal mean  relative  angular  momentum  varies 
little. Accordingly, the  amount of the viscosity has 
much effect on the  ratio  between  the  eddy  kinetic  energy 
and  the zonal kinetic energy. If the  amount of the vis- 
cosity increases to  that for Group D (Run 14), the  eddy 
kinetic  energy  takes  a  lower level and  the  distribution 
of the  zonal.  mean  relative  angular  momentum also 
changes. It seems that  the  determination of the  proper 
amount of viscosity should  be  made  in  the  future  on  the 
basis of the  theoretical  and  observational  understanding 
of diffusion in  the  atmosphere,  and  the  results of the 
numerical integration  should  be  compared  with  the 
evolution of a  wave and  the  budgets of angular  momentum 
and  kinetic energy in  the  actual  atmosphere. 

In  our  test  computation,  the  optimum  amount of vis- 
cosity for stabilizing  the  numerical  integration  was a little 
larger  than  the viscosity for  Group A. All the  test  runs 
with viscosity were integrated  with  the leapfrog method. 
If we use an  iterative  integration  method,  the  optimum 
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value of viscosity may  be different, as  the high-frequency 
part of the  short  wave is damped  through  the  integration. 
At  any  rate, it is to  be  noted  that  the  optimum  amount of 
viscosity must  not  be  larger  than  the  proper  amount which 
represents  the  actual diffusion process in the  atmosphere. 
If this condition is satisfied, we  will be justified in utilizing 
the viscosity term  in  the  equations for suppressing growth 
of the  short waves. If it is not satisfied, we should use 
another  method  to  control  the  short waves, e.g., a filtering 
of the  components- of high  wave  number in the  data  at 
times  during  the integration, or we should consider other 
computation procedures since (he behavior of short waves 
greatly  depends  on  the finite difference schemes. 

We have  attempted  to  investigate  the effects of vis- 
cosities of different types  and different amounts. We 
cannot guess to  what degree the  obtained  results  can be 
applied to  the general case. We cannot  say  the influences 
of viscosity in  the baroclinic model are as large as in the 
case of our test  computation. However,  our analysis 
suggests a t  least that  the specification of viscosity might 
be  important  in  the numerical  integration. 

6. SUMMARIES 

1. A new spherical grid system  was proposed, the grid 
density of which  is  almost  homogeneous. The meridional 
increment  is  constant for a given resolution. The zonal 
increment increases gradually  from  the  equator to  the 
pole by  the  factor of 712. The  number of grid points on 
the  entire globe is 4W+2 for the N-resolution. 

2. Rules of finite-differencing on the proposed grid 
system  were established so that  the  integral condition 
was satisfied locally a t  each  area element. 

3. The  integration of the  primitive  equations  was 
performed as  a  test of the new grid system  and  the 
finite difference schemes. The  barotropic  atmosphere 
with free surface  was  assumed.  Starting from the  same 
initial  conditions  as used by Phillips [7], the  marching 
process was taken  until  the  end of the  16th  day  with 
At=10 min. for the resolution N=20.  In  Runs 1, 2, and 
3, different time  integration  schemes  were  adopted. 
The effect of non-linear viscosity was investigated in 
Runs 11, 12, 13, and 14. Test  computations  with  linear 
viscosity were also made in Runs 21, 22, and 23. No 
noticeable distortion of the flow pattern occurred in any 
test  run. 

4. We could eliminate  the  (external)  inertia  gravita- 
tional  waves of both long and  short wavelengths by using 
the  iterative  integration  method (Scheme  B in section 
4), with  little effect  on the prediction of the  trend of the 
meteorological wave. The use of the  iterative  integration 
method, or a t  least  a mixed  use with  other  methods, 
seems  very important for stabilizing integration.  This 
method,  however, could not  suppress  the  development of 
the low-frequency short waves. 

5. We could  suppress  the  growth of short waves of 
both low and high  frequency  modes  with  either  the 
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non-linear or the  linear viscosity. In  this case, the  amount 
of viscosity should be  larger  than  the  optimum value. 
By use of the  optimum  value,  the effect of viscosity on long 
waves could be minimized. It is important  that  the 
optimum  amount  must  not exceed the  amount of viscosity 
which represents  the  actual diffusion process in the 
atmosphere. 

6. So far  as  this  numerical  test was concerned, the 
behavior of a  test  run using the non-linear viscosity 
with a certain coefficient  showed  good agreement  with 
that of a  run using the  linear viscosity with  a  certain 
eddy-viscosity coefficient. The analysis concerning the 
different effects of the different amounts of viscosity 
suggests a  probable  importance of the specification of 
viscosity in the  numerical  integration. 
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